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Lower-order terms in expansions of the equations of General Relativity in powers ofv/c
(post-Newtonian approximations) have long been a source of analogies with em theory.
A classic textbook example is the steadily spinning sphere generating a constant dipole
gravitomagnetic field, with its associated vector potentialB∗0 = ∇ × ζ (analog of the
magnetic fieldB of a spinning charged sphere). In the nonsteady case there are associated
gravitoelectric fieldsE∗ = −ζt −∇φ∗ also, whereφ∗ is the gravitational Coulomb
potential. The case of a rigid sphere spun up from rest by an external (nongravitational)
torque att = 0 is enlightening, as it demonstrates the generation ofB∗ andE∗wave fields
propagating outward with the velocity of lightc: for larget , B∗ → B∗0. In a coordinate
system for which the metric tensor is nearly equal to the Minkowski tensor, the three-
vector potentialζ obeys an equation isomorphic to the electrodynamic equation, that
is,h2ζ = −µ∗j∗ with j∗ = −ρv, whereρ is the mass density,v the three-velocity, and
µ∗ = 16πGc−2 = 3.7× 10−26 mksu,G being the gravitational constant. Significantly,
one can construct agauge invariantfour-vector potentialF∗ = (ic−14φ∗, ζ), obeying
field equations isomorphic to Maxwell’s in theLorentz gauge Fα,α = 0. The traveling
transient dipole field exerts torques on matter in its path, setting up shear strains that
may be measurable for very large momentum transfers, for example, between massive
astronomical bodies. A rough calculation suggests that such strains are in principle
observable.

1. INTRODUCTION

The classic post-Newtonian (PN) and parametrized post-Newtonian (PPN)
expansions of the field equations of general relativity (GR) in powers ofv/c¿ 1
demonstrate the existence of gravitomagnetic (GM) and gravitoelectric (GE) fields
analogous to the magnetic and electric fields of em theory (Braginskyet al., 1977;
Forward, 1961; Thorne, 1988). We designate these byB∗ andE∗ respectively; as
in em theory they may be described with the help of vector and scalar potentials
ζ andφ∗. If, as is generally the case, we may treatB∗ andE∗ as small, the classic
weak field approximation leads to similar results (Adler and Silbergleit, 1999).
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These fields are indeed extremely small, and have thus far not been observed in
the laboratory, although ingenious state-of-the-art experiments to generate Faraday
and Ampère type phenomena were proposed more than 20 years ago. Using the
language of em theory, such effects would correspond to near-field GE/GM energy
transfers between neighboring vibrating or rotating systems (Braginskyet al.,
1977).

Planetary- and astrophysical-scale phenomena appear more promising. A
classic model is the GM field generated by a spinning sphere of radiusr0. For
an approximately Cartesian–Minkowski space, the externalζ field is given in
Weinberg’s (1972) textbook in the form

ζ = (8π )−1µ∗r−3(x× J) r ≥ r0 (1)

whereJ is the sphere’s angular momentum,µ∗ = 3.7× 10−26 mksu andx = 1r r, r
being the field point distance from the center. This “steady-state” solution, valid
for constant or slowly varyingJ, gives a GM field

B∗ =∇× ζ (2)

filling all space for all time. For large enoughJ a spinning sphere must generate an
observableB∗ field. This should cause a gyroscope in polar orbit about the Earth to
precess at a rate of 0.04 arc sec/year (normally to the orbital plane). Measurement
of this precession is the primary goal of the Stanford Gravity Probe B experiment
(Everitt, 1988, 1992), to be launched in the year 2002.

This paper is concerned with the time-dependent problem, that is, with the
case of rapidly changingJ. We consider a stationary sphere suddenly spun-up at
time t = 0, that is, the caseJ ∝ 1(t). It is clear that, in an infinite space, the field of
Eq. (1) will be established fort →∞. It is equally obvious that this field cannot
fill all of space instantaneously. The establishment of such a field must therefore
involve a propagation process; relativistic invariance requires the propagation to
take place with the velocity of lightc.

In Section 2 we briefly review the elementary GM/GE–em isomorphisms.
Section 3 deals with the resulting predictions of GM/GE radiation and, specifi-
cally, with the radiation generated by a suddenly spun-up sphere, showing how
it may be observed in principle. Section 4 addresses some problems raised by
these results and in particular the question of angular momentum conservation.
A well-known theorem states that existence of dipole gravitational radiation in
gravitating systems, interacting solely through gravitational forces, would vio-
late angular momentum conservation (Misneret al., 1988). There is in em theory
an analogous argument for systems of charges of identical e/m—for example, a
cloud of electrons—interacting only through Coulomb forces: angular momen-
tum conservation prohibits the generation of magnetic dipole radiation. However,
application of an external emf, as in an antenna, allows one to accelerate electrons
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in a conductor in any desired fashion and generate dipole radiation. In the GM
case the impulsive “external” torque spinning up the sphere is of nongravitational
origin; furthermore it does not violate angular momentum conservation – it merely
corresponds to a transfer of angular momentum, for example, to the sphere from
a pair of jets or from a colliding body.

An objective of this article is to provide an elementary mathematical frame-
work relating these arguments to standard results of GR theory and to demonstrate
the possibility of dipole radiation generated by external, nongravitational sources.
Another, albeit more tenuous analogy, may be helpful here: in classical linear elas-
ticity theory waves in an infinite solid are of two types. There are compressional
modes (basically monopole but which may acquire quadrupole displacement ge-
ometries, e.g., in anisotropic models) and shear modes that are intrinsically dipole
fields; in homogeneous isotropic solids these modes are uncoupled, are excited
by different mechanisms, and supply different kinds of information about source
and medium. We are suggesting that, likewise, the quadrupole waves of classi-
cal gravitational wave theory and the dipole GM fields discussed in this article
represent independent modes of the metric, corresponding to different types of
source and potentially supplying different kinds of information about high energy
astrophysical events.

2. GM/GE FIELDS AND EM ISOMORPHISMS

As is well known, two classic perturbation techniques, making rather different
assumptions, are commonly applied to the GR field equations.

TheWeak-Field approximationtreats perturbations of the metricgαβ as small,
that is,

gαβ = ηαβ + hαβ , |h| ¿ 1, η jk = δ jk , η00 = −1 (3)

This yields a set of linear equations describing the propagation of gravitational
waves [we use the standard conventions (α, β = 0, 1, 2, 3),

( j , k = 1, 2, 3),x0 = ict, v0 = ic]

The post-Newtonian approximationalso assumes a coordinate system in
which the metric tensor is nearly equal to the Minkowski tensorηαβ , but treats
the corrections as expandable in powers ofv/c.

If both v/c and |h| are¿1 these approximations overlap. We shall treat
models fulfilling this dual condition.

While the metrical properties of rotating systems have played an important
role in the development of general relativity (Einstein, 1921; Stachel, 1980), the
concepts of GM/GE fields in such systems only came to the fore in the 1960s and
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1970s (see Braginskyet al., 1977, for a thorough bibliography of those years).
These fields appear very naturally in the lower-order terms of the PN expansions;
assuming weak fields and eliminating nonlinear terms makes the corresponding
equationsalmostisomorphic to the Maxwellian formalism.

Using the GR equations of motion in the PN approximation one obtains the
force f on a unit mass moving with velocityv in GM/GE fields. Takingv2/c2¿
1 and neglecting quadratic terms the classic result is (Braginskyet al., 1977;
Weinberg, 1972)

f = −∇φ∗ − ζ t + v× (∇× ζ) (4)

Taking

E∗ = −ζ t −∇φ∗ (5)

and using Eq. (2), Eq. (4) becomes isomorphic with the Lorentz force in electro-
dynamics for a unit charge in electric and magnetic fieldsE∗ andB∗. Equations
(2) and (5) give

∇× E∗ = −B∗t (6)

For constant or slowly varyingv/c, expansion to third order yields (Weinberg,
1972)

∇2ζ = −µ∗j ∗ (7)

with

j ∗ = −ρv (8)

µ∗ = 16πGc−2 (9)

Hereρ is the mass density and, in mks units,G = 6.67× 10−11 is the gravitational
constant, givingµ∗ = 3.7× 10−26 mksu.

Likewise for constant or slowly varyingρ(t) the Newtonian potentials obey,
to the lowest order

∇2φ∗ = 4πGρ (10)

Equations (7) and (10) imply−j ∗ = ρv = µ∗−1∇2ζ andρ = (4πG)−1∇2φ∗.
In our approximately flat space these quantities satisfy the mass conservation
condition in the form

∂ρ

∂t
+∇ · ρv = 0 (11)

As pointed out by Weinberg (1972; note author’s use ofc = 1 units), this equation,
which isnot restricted to slowly varying v(t), ρ(t) yields

4c−2∂φ
∗

∂t
+∇ · ζ = 0, (12)
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that is, the classic analog of the Lorentz gauge of electrodynamics with its well-
known factor of 4, which appears to somewhat flaw the isomorphism.

Effects of more rapid motions appear in the next order ofv2/c2 of the PN
expansions. Thus, expandingφ∗ to orderv4/c4 (Weinberg, 1972) and dropping
nonlinear terms, we have, to second order inv/c the wave equation (see appendix)

h
2φ∗ = 4πGρ (13)

Consistently with Eq. (7) and (12) we must then have, for rapidly varying fields

h
2ζ = −µ∗j ∗ (14)

This result can be recovered from the Weak-Field approximation (Adler and
Silbergleit, 1999, 2000).

We have therefore a system of potential field equations isomorphic with those
of em theory. Further examination of this isomorphism reveals the significance of
the factor 4 in the “GM Lorentz gauge” of Eq. (12). Thus in electrodynamics the
scalar and vector potentials (φ, A) obey

h
2φ = −σ

ε
(15)

h
2A = −µj (16)

whereσ and j are the charge and current densities. The conservation of charge
reads

∂σ

∂t
+∇ · j = 0 (17)

Substituting σ = −εh2φ, j = −µ−1h2A with εµ = c−2 gives h2(∇ · A +
c−2∂φ/∂t) = 0. Sinceφ andA must vanish at infinity, it follows that

c−2∂φ

∂t
+∇ · A = 0, (18)

that is, the Lorentz gauge of electrodynamics expresses conservation of charge.
The factor of 4 in the otherwise isomorphic Eq. (12) is due to the fundamental
difference in the source terms of the Eq. (15) and (13), that is in the constants
characteristic of the gravitational and electrical Coulomb laws. This difference is
not trivial, as it has a bearing on the gauge invariance of the em and GM/GE fields.
Thus in the em case we use a 4-vector potentialF = (ic−1φ, Ak) to write the field
equations in gauge invariant form:

h
2Fα = −µjα (19)

Fα
,α = 0 (20)

These equations are invariant under the transformationF ′α = Fα + ψ,α

providing ∇2ψ = 0. For small fields this is equivalent to a transformation
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x′α = xα + ψ(x) in harmonic coordinates: Eqs. (19) and (20) are thus gauge
invariant.

To rewrite the GM/GE field equations in gauge invariant form we introduce
8 = 4φ∗ and construct a 4-vector potentialF∗ = (ic−18, ζk).

Using the 4-vector momentum densityj ∗ = (−icρ ,−ρvk), Eqs. (12)–(14)
become

h
2F∗α = −µ∗ j ∗α (21)

F∗α,α = 0 (22)

In this form the GM/GE field equations are isomorphic to those of em theory
(keeping in mind, of course, that the analogy is with a special kind of electrody-
namics in which (1) all charges have the same sign and (2) Coulomb forces are
solely attractive).

The connection to the standard weak-field approximation (Adler and
Silbergleit, 1999, 2000) can be seen as follows. The Einstein field equations are
linearized to yield

h
2hαβ = −16πGc−4Sαβ (23)

Sαβ = Tαβ − 1

2
δαβT, (24)

T being the trace of the energy momentum tensorTαβ , where, usingx0 = ict, v0 =
ic:

Tjk = ρv j vk, T0 j = iρcvj , T00 = ρc2, ( j ,k = 1,2,3). (25)

Assumingv2/c2¿ 1 in the source term givesS00 ≈ ρc2/2 and

h
2h00 = −8πGc−2ρ (26)

h
2h j 0 = −16πGc−4S0 j (27)

Taking φ∗ = −h00c2/2, ζ j = −ich j 0 recovers Eqs. (13) and (14) with the
Lorentz gauge (12). This derivation of the GM/GE potential equations is simple and
direct and can be used for weak fields and nonrelativistic velocities as an alternative
to the PN expansions (Adler and Silbergleit, 1999, 2000). Using8 = 4φ∗ we
recover the gauge invariant 4-vectorF∗ obeying equations (21) and (22). This
derivation of the GM/GE wave theory is simpler and more direct than using the
PN expansions. The latter, however, is the usual approach to GM theory and
underlines best the em isomorphism.

In Eq. (23),hαβ is the classic gravitational wave tensor, of which only thehi j

quadrupole terms (Spin-2 waves) are retained as having physical significance. The
3-vectorh0 j (Spin-1 solution) is not gauge invariant and is treated as having no
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absolute physical significance (Weinberg, 1972). The same holds for theh00 and
h33 (scalar or Spin 0) solutions.

The columnH = (h00, h0j ) does not define a 4-vector verifying Eq. (12):
to construct a vector satisfying the Lorentz gauge we must use a different linear
combination of solutions, namelyF∗ = −ic(2h00, hj0) If, however,φ∗,t = 0 (e.g.,
spinning sphere with fixed center) the Lorentz gauge reduces to∇ · ζ = 0 and
H obeys the Lorentz gauge. In this special case there seems to be no essential
distinction between GM/GE modes and Spin-1 waves.

3. WAVE SOURCES: RAPID SPIN-UP OF RIGID SPHERE

The electrodynamic isomorphism shows that Eqs. (27) and (14) predict a
transverse propagating axialζ vector and a dipole radiation field. This point re-
quires comment.

Consider a system of particles whose motions are determined by Coulomb
attractions. In the em case there is a well-known proof showing that, if allei /mi

are the same, conservation of angular momentum prohibits the radiation of dipole
fields. The argument is immediately transposable to the isomorphic GM/GE case:
e∗i /mi ≡ 1 for all particles and there can be no radiation.Conservation of angular
momentum prohibits the radiation of dipole gravitomagnetic waves by systems
of particles interacting solely through gravitational fields(Misner et al., 1997).
A self-consistent theory of gravitating matter describes, in this sense, a closed
system – it does not allow for nongravitational forces and so neither does it allow
for dipole radiation. Only multipole fields, for example, the quadrupole radiation of
classic gravitational wave theory, are permitted. But particles can be accelerated by
other means – by what we might callexternalforces such as electrical, chemical,
nuclear, or other sources transfering momentum and energy to the gravitating
system. The isomorphic electromagnetic case offers the perfect analog: electrons
moving about in a conductor do not radiate unless driven by an applied potential,
that is, by an external force. Likewise, we may assume a rigid sphere spun up at
t = 0 (via the application of an external torque we need not specify). Neglecting
stresses and assuming perfectly rigid bodies, it is thus permissible to assign a broad
range of valuesv(t) to the source function (the rhs) of Eq. (14) without violating
any conservation principles.

To formulate theζ field external to a sphere after spin-up from rest to
angular momentumJ at t = 0, we note that forr > r 0 Eq. (14) is the homo-
geneous equationh2ζ = 0. Now if C is a solution ofh2C = 0, so is∇× C.
TakingC = −(8π )−1µ∗Jr−11(t − r/c+ r0/c) we find thatζ =∇× C gives, for
r > r 0:

ζ = (8π )−1µ∗r−3(x× J)[1(t − r/c+ r0/c)+ rc−1δ(t − r/c+ r0/c)] (28)
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This is the solution of Eq. (14) yielding Eq. (1) fort > (r − r0)/c, that is,
the GM field of the steadily rotating sphere is established after passage of the
wavefront att = (r − r0)/c.

If the spin-up time function isw(t) (with w→ 1 for somet > 0), we replace
1(t) andδ(t) in this solution byw(t) andw′(t) and theζ ,t field is

ζ ,t = (8π )−1µ∗r−3(x× J)[w′(t − r/c+ r0/c)+ rc−1w′′(t − r/c+ r0/c)] (29)

In Eq. (28) the first term in parenthesis puts in place the steady field of Eq. (1),
while the second term is the contribution of the (essentially dipolar) accelerations
due to application of an impulsive spin-up torque.

ζ ,t is not directly measurable as a matter of principle but it should be possible
to observe shear strains and torques generated by gradients ofζ ,t that is, by a
kind of transverse tidal effect. The second term in Eq. (29) falls off liker−1 and
is dominant in the farfield, maximum fields are in the equatorial plane normal to
J, and the corresponding torqueτ is proportional to∇× ζ ,t = B∗,t− . For a rod of
lengthd small compared to a wavelength joining two massesm and normal to the
wavefrontτ = m1ζ ,t × d ≈ m (∇× ζ ,t )d

2, that is, per unit moment of inertia:

τ = −(8π )−1µ∗c−2r−1Jw′′′ (30)

Outward energy flow is normal to the wavefront, that is, toζ t andB∗. Analogy
with the em case defines the energy flux vectorΠ∗ = µ∗−1ζ ,t × B∗. Similarly,
taking a leaf from classical formulae for plasmas, it would be possible to define
suitable Lagrange density functions (Tolstoy, 1973)

In principle then, such wavefields are observable either by measuring shear
strains, or using relative rotations of objects aligned with the direction of propaga-
tion, or the deflection of flows in a plane normal to the wavefront. The mean strain
magnitude|h| is

|h| = ∂(T−1
∫ T

0 ζ dt)

∂r
= c−1|ζ | (31)

In the far field we keep only the dominant (second) term forζ and assume
the measurements to take place in the equatorial plane normal toJ, giving

h ≈ (8π )−1µ∗Jr−1c−2w′(t − r/c+ r0/c) (32)

While the effect is clearly small, momentum transfers in highly energetic
astrophysical events, such as collisions between stars accelerated by forces of
nongravitational origin (e.g., supernova explosions) could generate detectable sig-
nals. It is difficult, at this stage, to develop quantitative models of astrophysical
spin-ups or spin-downs—one has little idea, for instance, of what a realistic time
dependencew(t) would be like—but we might obtain an idea of the orders of
magnitude as follows.
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Assumingw(t) = t T−11(t) for t ≤ T , andw(t) = 1 for t > T , maximum
strain occurs att = r/c− r0/c+ T :

hmax≈ (8π )−1µ∗Jr−1c−2T−1 (33)

Consider a neutron star of mass 2× 1030 kg colliding off center with a large
star. Assume a relative velocity of 106 m s−1 and a lever arm (off-centerdness) of
1011m. Neglecting losses gives an angular momentum transferJ = 2× 1047mksu.
Let the transfer time beT ≈ 103s. For a distancer = 1 pc≈ 3× 1016 m, Eq. (33)
yieldsh ≈ 10−16 –orh ≈ 10−19 for 1 kpc. Given recent progress in noise isolation
and laser interferometry (LIGO will measure extensional strains≈10−21 to 10−24;
see Abramoviciet al., 1992), shear strains of this magnitude may be observable.
Indeed, it is conceivable that high energy events of this type could be more easily
detected by their dipole fields.

Of course this simple model is overidealized, if only because other GM/GE
effects also take place in the collision of two such objects. For example, the iso-
morphic em theory for accelerated charges shows that the rectilinear acceleration
of a point massM of momentump traveling in the directionθ = 0 will produce
a dipolar GE fieldE∗ ≈ (4π )−1µ∗r−1 p,t (t − r/c) sinθ . In an elastic collision of
point masses of equalM thep,t have opposite signs and the fields cancel. For two
extended massesM1 = M2 of small dimensions the geometry of the resultant field
will be quadrupolar. In general the masses will be neither equal, rigid, nor point-
like. In view of the many uncertainties, detailed calculations at this stage would
be pointless.

4. CONCLUSIONS

The case of a stationary sphere centered at the origin of a Cartesian–
Minkowski system of coordinates and spun-up att = 0 to a constant angular
velocity illustrates how the classic steady gravitomagnetic field [Eqs. (1), (2)] is
put in place by a dipole wavefield travelling outward to infinity [Eqs. (28), (29)]
This demonstrates the existence of gravitational modes isomorphic to the elec-
tromagnetic waves in free space and described by a 4-vector potentialF∗α with
F∗0 = ic−18 where8 = 4φ∗, φ∗ being the Newtonian gravitational potential and
F∗j = ζ j ( j = 1,2,3). The latter are the components of an axial vector potential
isomorphic to the 3-vector potential of electrodynamics. In general the 4-vector
F∗ obeys the inhomogeneous wave equation (19), is gauge invariant, and satisfies
the Lorentz gaugeF∗α,α = 0. To conform with steady-state nomenclature we called
these gravitomagnetic (GM) waves and showed, in an idealized example, how to
calculate shear strains associated with the passage of a transient GM wavefront. We
noted order of magnitude estimates suggesting that angular momentum transfers
between massive colliding objects (stars) at ranges of 1 to 103 parsecs could yield
observable shear strains in the|h| ≈ 10−16 to 10−19 range.
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APPENDIX

The PN expansion assumes

g00 = −1+
2

g00 +
4

g00 + · · · (1A)

where
n

g00 indicates the term of order (v/c)n. Usingg00g00 = 1 gives

g00 = −1+ 2
g00 + 4

g00 + (
2
g00)

2+ · · · (2A)

From Weinberg (1972, p. 218):

∇2 2
g00 = −8πGc−4

0

T00 (3A)

∇2 4
g00 = c−2∂2 2

g00/∂t2− 8πGc−4[
2

T00 +2
2
g00

0

T00 +
2

Tii ] + 0(
2
gi j )

2 (4A)

Writing

∇2g00 = ∇2 2
g00 +∇2 4

g00 + · · · (5A)

Noting that in the
n
g00 equations, the source (rhs) has terms no higher than (v/c)n−2,

for a g00 solution good to 0(v/c)2 we may drop the∇2 4
g00 terms—providingg00

does not vary too rapidly with time. If we assume that field perturbations must
travel with the velocityc, then any∂2g00/∂t2 term acquires a factor≈c2 and must
be kept. The final result, good to 0(v/c)2, is

h
2 2

g00= −8πG/c4
0

T00 (6A)

Taking
2
g00= −2φ∗/c2,

0
T00= ρc2 yields Eq. (13)
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